geodezyx.conv package

Submodules

geodezyx.conv.conv_angle module

Created on Thu Aug 13 15:11:12 2020

@author: psakic

This sub-module of geodezyx.conv deals with angle conversion.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_angle.angle2equivalent_earth_parallel(angle_in, latitude_in, angtype='deg', earth_radius=6371008.8)

Quick and simple function which gives the equivalent distance on an Earth parallel circle of an angle

Useful to determine metric varaitions in longitude (but the latitude is also necessary to determine

the radius of the parallel)

angle can be : “deg”, “rad”, “mas”

geodezyx.conv.conv_angle.angle2equivalent_earth_radius(angle_in, angtype='deg', earth_radius=6371008.8)

Quick and simple function which gives the equivalent distance on a spherical Earth great circle of an angle

Useful to determine metric varations in latitude

angle can be : “deg”, “rad”, “mas”

geodezyx.conv.conv_angle.angle_from_3_pts(p1, p2, p3)

Gives angle between 3 points p3 is the vertex (sommet)

References

http://www.les-mathematiques.net/phorum/read.php?8,596072,596231

geodezyx.conv.conv_angle.angle_interpolation_quick(a, b, w)

Determine the interpolation between angle A & B by conversion to the cartesian space the parameter w € [0,1] define the interpoled angle C(w) where c(w=0) = a & c(w=1) = b

References

https://stackoverflow.com/questions/2708476/rotation-interpolation

geodezyx.conv.conv_angle.anglesfromvects(xa, ya, xb, yb, angtype='deg')

Determines the angle between the points A(xa,ya) and B(xb,yb)

angle can be : “deg”, “rad”

geodezyx.conv.conv_angle.arcsec2deg(arcsec_in)

Angle conversion

Convert : Arcsecond => Degrees

NB : Not really useful, should be avoided

geodezyx.conv.conv_angle.cartesian2polar(x, y)

Coordinates conversion

cartesian => polar conversion

Parameters:
  • x (numpy.array of float) – cartesian coordinates

  • y (numpy.array of float) – cartesian coordinates

Returns:

r , theta – polar coordinates (radius / angle in radians)

Return type:

float

geodezyx.conv.conv_angle.deg2arcsec(deg_in)

Angle conversion

Convert : Degrees => Arcsecond

NB : Not really useful, should be avoided

geodezyx.conv.conv_angle.degdec2dms(deg_in, only_dm=False)

Angle representation conversion

Convert : Decimal Degree => Degree Minute Seconds

See also dms_num2str for Numeric => String representation conversion

Parameters:
  • deg_in (float or iterable of floats) – Decimal degrees

  • only_dm (bool) – True to get the output string as a Degree Minute Angle only

Returns:

deg , minu , sec – 3 arrays for Degrees, Minutes, Seconds

Return type:

np.array of float

geodezyx.conv.conv_angle.dms2degdec_num(deg, minn=0, sec=0)

Angle representation conversion

Convert : Degree Minute Second float Angle => decimal Degree float Angle

Parameters:

sec (deg & minn &) – degres, minutes and seconds of the input Angle

Returns:

dd_float – Decimal degree Angle

Return type:

float

geodezyx.conv.conv_angle.dms2degdec_str(dms_str, only_dm=False)

Angle representation conversion

Convert : Degree Minute Second string Angle => decimal Degree float Angle

can manage only DM angle in input

NB : Too Complicated …. must be simplified

Parameters:
  • dms_str (str) – string of DMS angle e.g. “2°20’35.09”E”

  • only_dm (bool) – True if the string is only a Degree Minute Angle e.g. “40°52.0931’N” “28°31.4136’E”

Returns:

dd_float – Decimal degree Angle

Return type:

float

geodezyx.conv.conv_angle.dms_num2str(dms_inp, decimal_fmt='6.3f')

Angle representation conversion

Convert : numeric Degree-Minute-Second (DMS) angle => a string representation.

Parameters:
  • dms_inp (list or tuple of floats) – A list or tuple containing the DMS values. The first element is degrees, the second element (optional) is minutes, and the third element (optional) is seconds.

  • decimal_fmt (str, optional) – The format for the seconds part of the DMS string. Default is ‘7.4f’.

Returns:

out_str – A string representation of the DMS angle in the format “DD°MM’SS.SSSS””. If only degrees and minutes are provided, the format will be “DD°MM’”.

Return type:

str

geodezyx.conv.conv_angle.polar2cartesian(r, theta, ang='deg')

Coordinates conversion

polar => cartesian conversion

Parameters:
  • r (float or iterable of floats) – polar coordinates

  • theta (float or iterable of floats) – polar coordinates

  • ang (string) – ‘deg’ (degrees) or ‘rad’ (radian)

Returns:

x , y – cartesian coordinates

Return type:

numpy.array of float

geodezyx.conv.conv_coords module

Created on Thu Aug 13 15:11:12 2020

@author: psakic

This sub-module of geodezyx.conv deals with coordinate conversion.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_coords.ECEF2ECI(xyz, utc_times)

Convert ECEF (Earth Centered Earth Fixed) positions to ECI (Earth Centered Inertial) positions

Parameters:
  • xyz (numpy.array of floats) – XYZ are cartesian positions in ECEF. Should have shape (N,3)

  • utc_times (numpy.array of floats) – UTC_times are UTC timestamps, as datetime objects. Sould have shape (N)

Returns:

eci – Earth Centered Inertial coordinates. will have shape (N,3)

Return type:

numpy.array of floats

Note

Requires pyorbital module

[X] [C -S 0][X] [Y] = [S C 0][Y] [Z]eci [0 0 1][Z]ecf

C and S are cos() and sin() of gmst (Greenwich Meridian Sideral Time)

References

http://ccar.colorado.edu/ASEN5070/handouts/coordsys.doc Inspired from satellite-js (https://github.com/shashwatak/satellite-js)

geodezyx.conv.conv_coords.ECI2ECEF(xyz, utc_times)

Convert ECI (Earth Centered Inertial) positions to ECEF (Earth Centered Earth Fixed) positions

Parameters:
  • xyz (numpy.array of floats) – XYZ are cartesian positions in Earth Centered Inertial. Should have shape (N,3)

  • utc_times (numpy.array of floats) – UTC_times are UTC timestamps, as datetime objects. Sould have shape (N)

Returns:

ecef – Earth Centered Earth Fixed coordinates. will have shape (N,3)

Return type:

numpy.array of floats

Note

Requires pyorbital module

[X] ([C -S 0])[X] [Y] = inv([S C 0])[Y] [Z]ecef ([0 0 1])[Z]eci

Empirically:

[X] [ C S 0][X] [Y] = [-S C 0][Y] [Z]ecef [ 0 0 1][Z]eci

C and S are cos() and sin() of gmst (Greenwich Meridian Sideral Time)

References

http://ccar.colorado.edu/ASEN5070/handouts/coordsys.doc Inspired from satellite-js (https://github.com/shashwatak/satellite-js)

Note

Quick mode of the reverse fct, can be improved

geodezyx.conv.conv_coords.ECI2RTN(P, V, C)

legacy wrapper of ECI2RTN_or_RPY

geodezyx.conv.conv_coords.ECI2RTN_or_RPY(P, V, C, out_rpy=False, rpy_theo_mode=False)

convert ECI coordinates in RTN (RIC) or RPY (Roll Pitch Yaw)

Parameters:
  • P (numpy.array) – 3D vector, position of the ref object in ECI frame

  • V (numpy.array) – 3D vector, velocity of the ref object in ECI frame

  • C (numpy.array) – 3D Vector, coordinates in ECF frame that will be transformed

  • out_rpy (bool) – if True output in RPY frame, RTN instead

  • rpy_theo_mode (bool) – use the theoretical matrix composition, but wrong ans. empirically, only for debug !!

Returns:

Cout

Return type:

conversion of P in RTN or RPY ref. frame

References

“Coordinate Systems”, ASEN 3200 1/24/06 George H. Born

geodezyx.conv.conv_coords.ENU2XYZ(E, N, U, x0, y0, z0, velocity_mode=False)

Coordinates conversion

ENU Topocentic => XYZ ECEF Geocentric

Parameters:
  • E (numpy.array of floats) – cartesian coordinates E,N,U in meters

  • N (numpy.array of floats) – cartesian coordinates E,N,U in meters

  • U (numpy.array of floats) – cartesian coordinates E,N,U in meters

  • x0 (floats or numpy.array of floats) – coordinate of the topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as E,N,U) a different x0,y0,z0 will be applied for each E,N,U element

  • y0 (floats or numpy.array of floats) – coordinate of the topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as E,N,U) a different x0,y0,z0 will be applied for each E,N,U element

  • z0 (floats or numpy.array of floats) – coordinate of the topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as E,N,U) a different x0,y0,z0 will be applied for each E,N,U element

  • velocity_mode (bool) – For the Velocity mode, coordinates of the topocentric origin point are NOT added at the end of the conversion Default is False

Returns:

X,Y,Z – ECEF X,Y,Z Component (m)

Return type:

numpy.array of floats

References

https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates

geodezyx.conv.conv_coords.ENU2XYZ_legacy(E, N, U, Xref, Yref, Zref)

KEPT FOR LEGACY REASONS, use ENU2XYZ

diffère de ENU2XYZ pour d’obscure raisons, à investiguer !!! est laissé pour des scripts de conversion de GINS (170119)

this fct compute the dXYZ and not the final XYZ

geodezyx.conv.conv_coords.ENU2XYZ_vector(ENU, xyz_ref)
geodezyx.conv.conv_coords.GEO2XYZ(phi, llambda, he, angle='deg', a=6378137.0, e2=0.00669438003)

Coordinates conversion

FLH Geographic => XYZ ECEF Cartesian

Parameters:
  • phi (numpy.array of floats) – latitude (deg/rad), longitude (deg/rad), height (m)

  • llambda (numpy.array of floats) – latitude (deg/rad), longitude (deg/rad), height (m)

  • he (numpy.array of floats) – latitude (deg/rad), longitude (deg/rad), height (m)

  • angle (string) – describe the angle input type : ‘deg’ or ‘rad’

  • a (floats) – ellipsoid parameters (WGS84 per default)

  • e2 (floats) – ellipsoid parameters (WGS84 per default)

Returns:

X,Y,Z – cartesian coordinates X,Y,Z in meters

Return type:

numpy.array of floats

References

Based on PYACS of J.-M. Nocquet

geodezyx.conv.conv_coords.GEO2XYZ_vector(FLH, angle='deg', a=6378137.0, e2=0.00669438003)
geodezyx.conv.conv_coords.XYZ2ENU(dX, dY, dZ, lat0, lon0)

Coordinates conversion

XYZ ECEF Geocentric => ENU Topocentic

use XYZ2ENU_2 in priority

(XYZ2ENU is a core function for XYZ2ENU_2)

dXYZ = XYZrover - XYZref

Parameters:
  • dX (floats or numpy.array of floats) – cartesian coordinates difference between the considered point(s) and the reference point

  • dY (floats or numpy.array of floats) – cartesian coordinates difference between the considered point(s) and the reference point

  • dZ (floats or numpy.array of floats) – cartesian coordinates difference between the considered point(s) and the reference point

  • lat0 (floats or numpy.array of floats) – if they are iterable arrays (of the same size as dX,dY,dZ) a different x0,y0,z0 will be applied for each dX,dY,dZ element

  • lon0 (floats or numpy.array of floats) – if they are iterable arrays (of the same size as dX,dY,dZ) a different x0,y0,z0 will be applied for each dX,dY,dZ element

Returns:

E,N,U – East North Up Component (m) w.r.t. x0,y0,z0

Return type:

numpy.array of floats

References

https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates

Note

This recursive fuction should be improved

geodezyx.conv.conv_coords.XYZ2ENU_2(X, Y, Z, x0, y0, z0)

Coordinates conversion

XYZ ECEF Geocentric => ENU Topocentic

Parameters:
  • X (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • Y (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • Z (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • x0 (floats or numpy.array of floats) – coordinate of the wished topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as X,Y,Z) a different x0,y0,z0 will be applied for each X,Y,Z element

  • y0 (floats or numpy.array of floats) – coordinate of the wished topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as X,Y,Z) a different x0,y0,z0 will be applied for each X,Y,Z element

  • z0 (floats or numpy.array of floats) – coordinate of the wished topocentric origin point in the geocentric frame if they are iterable arrays (of the same size as X,Y,Z) a different x0,y0,z0 will be applied for each X,Y,Z element

Returns:

E,N,U – East North Up Component (m) w.r.t. x0,y0,z0

Return type:

numpy.array of floats

References

https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates

geodezyx.conv.conv_coords.XYZ2ENU_around_fix_pos(X, Y, Z)

Computes the mean of the X,Y,Z and return the topocentric ENU position around its mean position

Parameters:
  • X (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • Y (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • Z (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

Returns:

  • E,N,U (numpy.array of floats) – East North Up Component (m) w.r.t. the mean position

  • x0 , y0 , z0 (floats) – coordinates of the mean position in the geocentic frame

geodezyx.conv.conv_coords.XYZ2ENU_vector(XYZ, xyz0)
geodezyx.conv.conv_coords.XYZ2GEO(x, y, z, outdeg=True, A=6378137.0, E2=0.00669438003)

Coordinates conversion

XYZ ECEF Cartesian => FLH Geographic

Parameters:
  • x (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • y (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • z (numpy.array of floats) – cartesian coordinates X,Y,Z in meters

  • outdeg (bool) – if True, degrees output for the angle, else radian

  • A (floats) – ellipsoid parameters (WGS84 per default)

  • E2 (floats) – ellipsoid parameters (WGS84 per default)

Returns:

latitude, longitude, height – latitude (deg/rad), longitude (deg/rad), height (m)

Return type:

numpy.array of floats

References

Based on PYACS of J.-M. Nocquet

geodezyx.conv.conv_coords.XYZ2GEO_vector(XYZ, outdeg=True, A=6378137.0, E2=0.00669438003)
geodezyx.conv.conv_coords.normal_vector(phi, llambda, angle='deg', normalized=True)

Compute the Ellipsoid “Normale”

References

  1. Bosser (2012), Géométrie de l’Ellipsoïde, p27

geodezyx.conv.conv_coords.sENU2sFLH(F, L, H, sE, sN, sU, ang='deg', A=6378137.0, E2=0.00669438003)

Convert standard deviation Cartesian Topocentric ENU => Geographic FLH

Warning

Inputs values are assumed as uncorrelated, which is not accurate Must be improved

References

Linear Algebra, Geodesy, and GPS p332

geodezyx.conv.conv_coords.sFLH2sENU(F, L, H, sF, sL, sH, ang='deg')

Convert standard deviation Geographic FLH => Cartesian Topocentric ENU

Warning

Inputs values are assumed as uncorrelated, which is not accurate Must be improved

References

Linear Algebra, Geodesy, and GPS p332

geodezyx.conv.conv_coords.sFLH2sXYZ(F, L, H, sF, sL, sH, ang='deg')

Convert standard deviation Geographic FLH => Cartesian ECEF XYZ

Warning

Inputs values are assumed as uncorrelated, which is not accurate Must be improved

References

Linear Algebra, Geodesy, and GPS p332

geodezyx.conv.conv_coords.sXYZ2sENU(X, Y, Z, sX, sY, sZ, sXY=0, sYZ=0, sXZ=0)

Convert standard deviation Cartesian ECEF XYZ => Cartesian Topocentric ENU

Warning

Inputs values are now assumed as correlated (241105)

References

Linear Algebra, Geodesy, and GPS p332

geodezyx.conv.conv_coords.vector_separator(ABC)

Split a Nx3 Array/DataFrame in three separated 1-component vectors To simplify the usage of the conversion functions (which take single component vectors as input)

Parameters:

ABC (Array or DataFrame) – Nx3 XYZ, ENU… array.

Returns:

  • A (Array) – 1st component.

  • B (Array) – 2nd component.

  • C (Array) – 3rd component.

geodezyx.conv.conv_coords.wnorm(phi, a=6378137.0, e2=0.00669438003)

Compute the Ellipsoid “Grande Normale”

References

ALG0021 in NTG_71 (IGN Lambert Projection Tech document) Based on PYACS of J.-M. Nocquet

geodezyx.conv.conv_geometric module

Created on Thu Aug 13 15:11:12 2020

@author: psakicki

This sub-module of geodezyx.conv deals with low-level geometric operation.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_geometric.barycenter(points_list_in)

Determines the barycenter of a list of points

geodezyx.conv.conv_geometric.dist(A, B)

Cartesian distance between 2 points A & B

Parameters:
  • A (numpy.array of float) – 3D-points

  • B (numpy.array of float) – 3D-points

Returns:

D – distance between A & B

Return type:

float

geodezyx.conv.conv_geometric.dist_diff(A, B)

First derivative of cartesian distance between 2 points A & B

Parameters:
  • A (numpy.array of float) – “points”, can be 2D or 3D vectors (list, np.array …)

  • B (numpy.array of float) – “points”, can be 2D or 3D vectors (list, np.array …)

Returns:

  • diffA (numpy.array of float) – [ dD/dxa , dD/dya , dD/dza ]

  • diffB (numpy.array of float) – [ dD/dxb , dD/dyb , dD/dzb ] = -diffA

geodezyx.conv.conv_geometric.equilateral_triangle(side)

Gives coordinates of an equilateral triangle of a given side

geodezyx.conv.conv_geometric.line_maker(x1, y1, x2, y2, nbpts=10000)

Determine points of a line easily

Parameters:
  • x1 (float) – Coordinates of the start point

  • y1 (float) – Coordinates of the start point

  • x2 (float) – Coordinates of the end point

  • y2 (float) – Coordinates of the end point

Returns:

X,Y – points of the line

Return type:

numpy.array of float

geodezyx.conv.conv_geometric.orthogonal_projection(Xa, Xb, Xv)

Project a point A on a line defined with a vector V and a point B

Parameters:
  • Xa (list/numpy.array of float) – Coordinates of A point, we want to project

  • Xb (list/numpy.array of float) – Coordinates of B point, the origin point of the vector

  • Xv (list/numpy.array of float) – Coordinates of the line direction vector

Returns:

  • Xh (numpy.array of float) – Coordinates of H point, projection of A

  • D (float) – Distance between A and H

geodezyx.conv.conv_geometric.pythagore(a, b, c=0)

Computes Pythagore’s formula

geodezyx.conv.conv_geometric.relative_orientation(x1, y1, x2, y2, trigo_orient=True)

Return the angle between a point 1 and a point 2 (reference vector : to the right)

geodezyx.conv.conv_geometric.vincenty_full(point1, point2, miles=False, full=True, azimuth_in_deg=True)

Vincenty’s formula (inverse method) to calculate the distance (in kilometers or miles) between two points on the surface of a spheroid. Gives also the Azimuth between 2 points

Parameters:
  • point1 (iterable of float) – coordinates of the points

  • point2 (iterable of float) – coordinates of the points

  • miles (bool) – kilometers if True

  • full (bool) – Description param3

  • azimuth_in_deg (bool) – azimut in Rad if False

Returns:

  • s (float) – Distance betwwen the 2 points

  • fwdAz,revAz (float) – Forward and Reverse Azimuth between the 2 points

References

https://github.com/maurycyp/vincenty/blob/master/vincenty/

Examples

>>> vincenty((0.0, 0.0), (0.0, 0.0))  # coincident points
0.0
>>> vincenty((0.0, 0.0), (0.0, 1.0))
111.319491
>>> vincenty((0.0, 0.0), (1.0, 0.0))
110.574389
>>> vincenty((0.0, 0.0), (0.5, 179.5))  # slow convergence
19936.288579
>>> vincenty((0.0, 0.0), (0.5, 179.7))  # failure to converge
>>> boston = (42.3541165, -71.0693514)
>>> newyork = (40.7791472, -73.9680804)
>>> vincenty(boston, newyork)
298.396057
>>> vincenty(boston, newyork, miles=True)
185.414657

geodezyx.conv.conv_interpolators module

Created on Tue Aug 24 13:58:51 2021

@author: psakicki

class geodezyx.conv.conv_interpolators.Slerp_time(times, rotations, extrapolate=True)

Bases: Slerp

Slerp interpolation (for quaterinons) with datetime as inputs

This class inherites from scipy.spatial.transform.Slerp and can take as input datetime as X

  1. Sakic 2020-01

class geodezyx.conv.conv_interpolators.interp1d_time(x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False)

Bases: interp1d

Interpolation with datetime as inputs

This class inherites from scipy.interpolate.interp1d and can take as input datetime as X

Pierre Sakic 2020-01

dtype

geodezyx.conv.conv_proj_lambert module

Created on Thu Aug 13 15:11:12 2020

@author: psakic

This sub-module of geodezyx.conv deals with Lambert/Conform Conic projections.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_proj_lambert.lambert_projection(long, lat, n, c, e, lc, Xs, Ys)

ALG0003 in NTG_71 (IGN Lambert Projection Tech document)

geodezyx.conv.conv_proj_lambert.lambert_projection_CC_frontend(long, lat, NZ=93)

Project WGS84/ITRF Latitude/Longitude to Lambert Conique Conforme

Parameters:
  • long (float) – WGS84/ITRF Longitude/Latitude

  • lat (float) – WGS84/ITRF Longitude/Latitude

  • NZ (int) – Lambert93, NZ = 0 or = 93

Returns:

  • X,Y (float) – Projected coordinates

  • Source

  • ——

  • https (//fr.wikipedia.org/wiki/Projection_conique_conforme_de_Lambert)

  • https (//geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_71.pdf)

  • https (//geodesie.ign.fr/contenu/fichiers/documentation/rgf93/Lambert-93.pdf)

geodezyx.conv.conv_proj_lambert.lambert_secante_parameter(a, e, l0, phi0, phi1, phi2, X0, Y0)

ALG0054 in NTG_71 (IGN Lambert Projection Tech document)

geodezyx.conv.conv_proj_lambert.latitude_isometric(phi, e)

ALG0001 in NTG_71 (IGN Lambert Projection Tech document)

geodezyx.conv.conv_proj_utm module

Created on Wed Jan 25 20:37:05 2023

@author: psakic

This sub-module of geodezyx.conv deals with UTM projections.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_proj_utm.ellipsoid_params(ellips)
geodezyx.conv.conv_proj_utm.utm_coef(e=None, m=0)
Projection coefficients

returns a vector of 5 coefficients based on the input parameters

Parameters:
  • e (TYPE, optional) – first ellipsoid excentricity. The default is None.

  • m (int, optional) –

    Describes the expected coefficients.

    M = 0 for transverse mercator M = 1 for transverse mercator reverse coefficients M = 2 for merdian arc

    The default is 0.

Notes

It does not perform cross-ellips conversion. Precision is near a millimeter.

This function implements the IGN algorithm. This one is more accurate than pyproj or utm python lib because it implements more coefficients.

Returns:

c – Coefficient Matrix.

Return type:

numpy array

geodezyx.conv.conv_proj_utm.utm_geo2xy(lat, lon, ellips='wgs84', zone=None)

Latitude/Longitude to Universal Transverse Mercator(UTM) coordinates precise (mm-level) conversion.

Converts coordinates in Latitude/Longitude (in degrees) to UTM X and Y (in meters).

Default ellipsoid is WGS84.

Parameters:
  • lat (float or numpy array) – Latitude (in degrees).

  • lon (float or numpy array) – Longitude (in degrees).

  • ellips (str or 2-tuple, optional) –

    uses specific ellipsoid for conversion. ellipsoid can be one of the following strings

    ’wgs84’: World Geodetic System 1984 (default) ‘nad27’: North American ellips 1927 ‘clk66’: Clarke 1866 ‘nad83’: North American ellips 1983 ‘grs80’: Geodetic Reference System 1980 ‘int24’: International 1924 / Hayford 1909

    OR can be a 2-element tuple [A,F] where A is semimajor axis (in meters) F is flattening of the user-defined ellipsoid. The default is “wgs84”.

  • zone (int, optional) – forces the UTM ZONE (scalar integer or same size as LAT and LON) instead of automatic set. Positive for the nothern hemisphere. Negative for the southern hemisphere. The default is None.

Returns:

  • x,y (float or numpy array) – UTM X and Y coordinates (in meters).

  • f (float or numpy array) – returns also the computed UTM ZONE (negative value for southern hemisphere points).

Notes

It does not perform cross-ellips conversion. Precision is near a millimeter.

This function implements the IGN algorithm. This one is more accurate than pyproj or utm python lib because it implements more coefficients.

Source

Adapted from WebObs source code, François Beauducel et al. https://github.com/IPGP/webobs/blob/master/CODE/matlab/ll2utm.m

I.G.N., Projection cartographique Mercator Transverse: Algorithmes,

Notes Techniques NT/G 76, janvier 1995. https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_76.pdf

geodezyx.conv.conv_proj_utm.utm_xy2geo(x, y, f, ellips='wgs84')

Universal Transverse Mercator (UTM) coordinates to Latitude/Longitude

Converts coordinates in UTM X and Y (in meters) to Latitude/Longitude (in degrees)

Default ellipsoid is WGS84.

Parameters:
  • x (array-like) – UTM X coordinates (in meters).

  • y (array-like) – UTM Y coordinates (in meters).

  • f (int) – UTM zone. Positive for the nothern hemisphere. Negative for the southern hemisphere.

  • ellips (str or tuple, optional) – Datum for conversion. Default is ‘wgs84’. Can be one of the predefined strings or a tuple (A, F).

Returns:

  • lat (array-like) – Latitude coordinates (in degrees).

  • lon (array-like) – Longitude coordinates (in degrees).

  • Source

  • ——

  • Adapted from WebObs source code, François Beauducel et al.

  • https (//github.com/IPGP/webobs/blob/master/CODE/matlab/ll2utm.m) – I.G.N., Projection cartographique Mercator Transverse: Algorithmes,

  • Notes Techniques NT/G 76, janvier 1995.

  • https (//geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_76.pdf)

geodezyx.conv.conv_rinex module

Created on Thu Aug 13 15:11:12 2020

@author: psakicki

This sub-module of geodezyx.conv deals with rinex name handeling conversion.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_rinex.interval_from_rinex_name(rnx_name_inp)

from a RINEX file name (long name) determines the nominal data interval

Parameters:

rnx_name_inp (str) – long RINEX filename.

Returns:

interval_ok – nominal data interval in seconds.

Return type:

int

geodezyx.conv.conv_rinex.period_from_rinex_name(rnx_name_inp)

from a RINEX file name (long naming) determines the nominal file period

Parameters:

rnx_name_inp (str) – long RINEX filename.

Returns:

interval_ok – nominal data interval in seconds.

Return type:

int

geodezyx.conv.conv_rinex.rinex_regex(compressed=None, compiled=False)

Return a regex corresponding to a RINEX name (v2 - short convention)

Parameters:

compressed (bool or None) – return the regex for a compressed rinex if None, does not matter (return both compressed or not)

compiledbool

return a Python regex object already compliled

Returns:

out – a regex

Return type:

string or python’s regex

geodezyx.conv.conv_rinex.rinex_regex_long_name(compressed=None, compiled=False)

Return a regex corresponding to a RINEX name (v3/4 - long convention)

Parameters:

compressed (bool or None) – return the regex for a compressed rinex if None, does not matter (return both compressed or not)

compiledbool

return a Python regex object already compliled

Returns:

out – a regex

Return type:

string or python’s regex

geodezyx.conv.conv_rinex.rinex_regex_long_name_brdc(compressed=None, compiled=False)

Return a regex corresponding to a BROADCAST RINEX name (v3/4 - new convention)

Parameters:

compressed (bool or None) – return the regex for a compressed rinex if None, does not matter (return both compressed or not)

compiledbool

return a Python regex object already compliled

Returns:

out – a regex

Return type:

string or python’s regex

geodezyx.conv.conv_rinex.rinex_regex_long_name_gfz_godc(compressed=None, compiled=False)

Return a regex corresponding to a RINEX name (new convention) from the GFZ’s GODC archive (both OBS and NAV types)

Parameters:

compressed (bool or None) – return the regex for a compressed rinex if None, does not matter (return both compressed or not)

compiledbool

return a Python regex object already compliled

Returns:

out – a regex

Return type:

string or python’s regex

geodezyx.conv.conv_rinex.rinex_regex_search_tester(str_in, short_name=True, long_name=True, brdc_long_name=False, gfz_godc_name=False, compressed=None)

Frontend function for a RINEX regex search/match

Parameters:
  • str_in (str) – input string. If it is a path, will extract its basename.

  • short_name (bool, optional) – check if the pattern matches a short name RINEX. The default is True.

  • long_name (bool, optional) – check if the pattern matches a long name RINEX. The default is True.

  • brdc_long_name (bool, optional) – check if the pattern matches a brdc long name RINEX. The default is False.

  • gfz_godc_name (bool, optional) – check if the pattern matches a GFZ’s GODC (GNSS Operational Data Center) internal long name RINEX. The default is False.

  • compressed (bool or None) – return the regex for a compressed rinex if None, does not matter (return both compressed or not)

Returns:

match result.

Return type:

None or re object

geodezyx.conv.conv_rinex.rinex_regex_tester()

Returns two list of string to test the efficiency of the RINEX regexs.

true_positive_rnxs is a list of strings describing actual RINEX filenames. They must be matched

false_positive_rnxs is a list of strings describing other filenames. But which have been matched at one moment because of too weak regexs They must NOT be matched

geodezyx.conv.conv_rotation_matrices module

Created on Thu Aug 13 15:11:12 2020

@author: psakicki

This sub-module of geodezyx.conv deals with rotation, implemented with matrices.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_rotation_matrices.C_2D(theta, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_cep2itrs(xpole, ypole)

xpole and ypole are given in mas, miliarcsecond

References

Hofmann-Wellenhof,et al. 2008 - GNSS - p21 Xu - 2007 - GPS - p17 Xu - Orbits - p15

geodezyx.conv.conv_rotation_matrices.C_ecef2enu(phi, llambda, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_ecef2enu_sigma(phi, llambda, angtype='deg')

Gives the transformation matrix between ECEF and ENU (East North Up) ref. frame for the sigmas (variance propagation)

Source

https://stackoverflow.com/questions/51162460/converting-ecef-xyz-covariance-matrix-to-enu-covariance-matrix

geodezyx.conv.conv_rotation_matrices.C_ecef2ned(phi, llambda, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_eci2rtn(P, V)

gives the transformation matrix between ECI ref. frame and RTN (aka RIC or RSW)

Parameters:
  • P (numpy.array) – 3D vector, position of the object in ECI frame

  • V (numpy.array) – 3D vector, velocity of the object in ECI frame

Returns:

C_eci2rtn – transformation matrix

Return type:

numpy.array

References

“Coordinate Systems”, ASEN 3200 1/24/06 George H. Born https://www.colorado.edu/ASEN/asen3200/handouts/Coordinate%20System.pdf

geodezyx.conv.conv_rotation_matrices.C_enu2ecef(phi, llambda, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_enu2ned()
geodezyx.conv.conv_rotation_matrices.C_euler(phi, theta, psi)

Gives the matrix of an Euler rotation

References

https://fr.wikipedia.org/wiki/Angles_d%27Euler

geodezyx.conv.conv_rotation_matrices.C_ned2ecef(phi, llambda, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_ned2enu()
geodezyx.conv.conv_rotation_matrices.C_rpy2enu(roll, pitch, yaw, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_rpy2enu2(roll, pitch, yaw, angtype='deg')
geodezyx.conv.conv_rotation_matrices.C_rtn2rpy()
geodezyx.conv.conv_rotation_matrices.C_x(theta)

Gives the rotation matrix along the X-axis

Manage iterable (list, array) as input

[1,0, 0] [0,C,-S] [0,S, C]

References

https://fr.wikipedia.org/wiki/Matrice_de_rotation#En_dimension_trois

geodezyx.conv.conv_rotation_matrices.C_y(theta)

Gives the rotation matrix around the Y-axis

Manage iterable (list, array) as input

[ C,0,S] [ 0,1,0] [-S,0,C]

References

https://fr.wikipedia.org/wiki/Matrice_de_rotation#En_dimension_trois

geodezyx.conv.conv_rotation_matrices.C_z(theta)

Gives the rotation matrix around the Z-axis

[C,-S,0] [S, C,0] [0, 0,1]

References

https://fr.wikipedia.org/wiki/Matrice_de_rotation#En_dimension_trois

geodezyx.conv.conv_rotation_matrices.add_offset(Direction, Delta, Point=None, out_delta_enu=False)

Un mode adhoc a du être implémenté dans la fonction élémentaire vector_RPY pour que ça puisse marcher correctement, reste à comprendre pourquoi …

out_delta_enu est prioritaire sur les autres modes de sortie et renvoie le delta

par défaut on a le delta + le vecteur Direction et si Point est précisé : Point + Direction

geodezyx.conv.conv_rotation_matrices.rot_quelconq(theta, Vx, Vy, Vz, angtype='deg')
geodezyx.conv.conv_rotation_matrices.vector_RPY(V, out_deg=True, ad_hoc_mode=False)

Donne le “Roll Pitch Yaw” pour un Point/Vecteur (les coordonnées spheriques plus exactement, le roll sera tjrs nul)

le ad_hoc_mode est la pour corriger un bug que je n’explique pas pour l’utilisation de ads_offset (cette methode a été trouvé par les scripts ENURPY2 et ENURPY3)

geodezyx.conv.conv_time module

Created on Thu Aug 13 15:11:12 2020

@author: psakic

This sub-module of geodezyx.conv deals with time conversion.

it can be imported directly with: from geodezyx import conv

The GeodeZYX Toolbox is a software for simple but useful functions for Geodesy and Geophysics under the GNU LGPL v3 License

Copyright (C) 2019 Pierre Sakic et al. (IPGP, sakic@ipgp.fr) GitHub repository : https://github.com/GeodeZYX/geodezyx-toolbox

geodezyx.conv.conv_time.MJD2dt(mjd_in, seconds=None, round_to='1s')

Time representation conversion

Modified Julian Day => Python’s Datetime

Parameters:
  • mjd_in (float/int or list/numpy.array of float/int.) – Modified Julian Day. Can handle several float/int in an iterable.

  • seconds (float/int or list/numpy.array of float/int.) – Handle a number

  • round_to (str or None) – round the output datetime see round_dt function for details

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

Note

Modified Julian Day starts at 0h Nov 17, 1858 (JD − 2400000.5)

https://en.wikipedia.org/wiki/Julian_day

geodezyx.conv.conv_time.date2dt(date_in)

Time Python type conversion

Python’s Date => Python’s Datetime

Parameters:

date_in (date or list/numpy.array of date.) – Date(s). Can handle several dates in an iterable.

Returns:

L – Time as Datetime(s)

Return type:

Datetime or list of Datetime

geodezyx.conv.conv_time.date_string_2_dt(strin)

Time representation conversion

String => Python’s Datetime

Wrapper of dateutil.parser.parse

The input string should looks like a timestamp

Parameters:

strin (string or list/numpy.array of strings.) – string(s). Can handle several datetimes in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.datestr_gins_filename_2_dt(datestrin)

Time representation conversion

GINS filename time format => Python’s Datetime

GINS filename time format : ‘YYMMDD_HHMMSS’

It is the time format used in the listing names

Parameters:

datestrin (string or list/numpy.array of string.) – GINS filename time format string(s). Can handle several string in an iterable.

Returns:

dtout – Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

geodezyx.conv.conv_time.datestr_sinex_2_dt(datestrin)

Time representation conversion

SINEX time format => Python’s Datetime

SINEX time format : ‘YY:DDD:SSSSS’ or ‘YYYY:DDD:SSSSS’

Parameters:

datestrin (string or list/numpy.array of string.) – SINEX time format string(s). Can handle several string in an iterable.

Returns:

dtout – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.datetime_improved(*args)
geodezyx.conv.conv_time.doy2dt(year, days, hours=0, minutes=0, seconds=0)

Time representation conversion

Day of Year Time => Python’s datetime

Parameters:
  • year (float or list/numpy.array of floats.) – year, days of year

  • days (float or list/numpy.array of floats.) – year, days of year

  • hours (float or list/numpy.array of floats, optional) – hours, minutes, seconds

  • minutes (float or list/numpy.array of floats, optional) – hours, minutes, seconds

  • seconds (float or list/numpy.array of floats, optional) – hours, minutes, seconds

Returns:

L – Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

geodezyx.conv.conv_time.dt2MJD(dtin)

Time representation conversion

Python’s Datetime => Modified Julian Day

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

L – Modified Julian Day(s)

Return type:

float or list of floats

Note

Modified Julian Day starts at 0h Nov 17, 1858 (JD − 2400000.5)

https://en.wikipedia.org/wiki/Julian_day

geodezyx.conv.conv_time.dt2date(dt_in)

Time Python type conversion

Python’s Datetime => Python’s Date

Parameters:

dt_in (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

L – Time as Datetime(s)

Return type:

Datetime or list of Datetime

geodezyx.conv.conv_time.dt2doy(dtin, outputtype=<class 'str'>)
geodezyx.conv.conv_time.dt2doy_year(dtin, outputtype=<class 'str'>)

Time representation conversion

Python’s datetime => Day of Year, Year

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

  • outputtype (type, optional) – The type to which the output should be converted. Default is str.

Returns:

If dtin is a single datetime, returns a tuple (doy, year) where doy is the day of the year and year is the year. If dtin is an iterable, returns a list of such tuples.

Return type:

tuple or list of tuple

geodezyx.conv.conv_time.dt2epoch_rnx3(dt_in, epoch_flag=0, nsats=0, rec_clk_offset=0)

Time representation conversion

Python’s Datetime => RINEX3/4 epoch representation e.g. > 2022 11 29 17 15 25.0000000 0 0 0.000000000000

Parameters:
  • dt_in (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s).

  • epoch_flag (int, optional) –

    Epoch flag:

    0 : OK 1 : power failure between previous and current epoch >1 : Special event (see RINEX documentation).

    The default is 0.

  • nsats (int, optional) – Number of satellites observed in current epoch. The default is 0.

  • rec_clk_offset (float, optional) – Receiver clock offset correction (seconds). The default is 0.

Returns:

epoch_out – output RINEX3/4 epoch representation.

Return type:

str or list of str

geodezyx.conv.conv_time.dt2fracday(dtin)

Time representation conversion

Python’s datetime => Fraction of the day

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

fraction_day – Fractional of the day Is a list of int if the input is an iterable

Return type:

float

geodezyx.conv.conv_time.dt2gpstime(dtin, dayinweek=True, inp_ref='utc', outputtype=<class 'int'>)

Time scale conversion

Python’s datetime (UTC,TAI or GPS time scale) => GPS time

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime) – Datetime(s). Can handle several datetimes in an iterable.

  • inp_ref (str) – “utc” : apply the 19 sec & leap second correction at the epoch “gps” : no correction applied “tai” : apply -19 sec correction

  • dayinweek (bool) –

    if True : returns GPS week, day in GPS week

    if False : returns GPS week, sec in GPS week

  • outputtype (type) – the type of the output

Returns:

GPS_week, GPS_day/GPS_sec – GPS week or GPS day/GPS sec

Is a list of tuple if the input is an iterable

Return type:

tuple of int

geodezyx.conv.conv_time.dt2gpsweek_decimal(dtin, return_middle_of_day=True)

Time representation conversion

Python’s datetime => GPS week

Return the GPS week in a decimal mode

(Easier for plots)

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime) – Datetime(s). Can handle several datetimes in an iterable.

  • return_middle_of_day (bool) – if False, return the decimal part of the week at the begining of the day

Returns:

GPS_week_decimal – decimal GPS week

Is a list of float if the input is an iterable

Return type:

float

geodezyx.conv.conv_time.dt2jjul_cnes(dtin, onlydays=True)

Time representation & scale conversion

Python’s Datetime => Julian Day CNES

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s). Can handle several datetimes in an iterable.

  • onlydays (bool) – if False, return also the seconds in the day

Returns:

L – Julian Day CNES, [seconds in the Day]

Return type:

int or list of int.

Note

Julian Day CNES starts at 0h Jan 1, 1950 (JD − 2433282.5)

https://www.aviso.altimetry.fr/fr/donnees/outils/jours-calendaires-ou-jours-juliens.html

geodezyx.conv.conv_time.dt2list(dtin, return_useful_values=True)

Time representation conversion

Python’s Datetime => Years, Months, Days, Hours, Minutes, Seconds

Parameters:
  • dtin (datetime.datetime) – Datetime

  • return_useful_values (bool) – if True, returns only Years, Months, Days

Returns:

L – Years, Months, Days, [Hours, Minutes, Seconds]

Return type:

list of int

geodezyx.conv.conv_time.dt2posix(dtin, out_array=False)

Time representation conversion

Python’s Datetime => POSIX Time

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.) – Datetime(s). Can handle several datetimes in an iterable.

  • out_array (bool) – if iterable as input, force the output as a Numpy array

Returns:

L – POSIX Time(s)

Return type:

float or list/numpy.array of floats

geodezyx.conv.conv_time.dt2secinday(dtin)

Time representation conversion

Python’s datetime => Seconds in days

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

secinday – Seconds in the day Is a list of int if the input is an iterable

Return type:

int

geodezyx.conv.conv_time.dt2sp3_timestamp(dtin, start_with_star=True)

Time representation conversion

Python’s Datetime => SP3 Timestamp e.g.

  • 2000 5 28 0 0 0.00000000

geodezyx.conv.conv_time.dt2str(dtin, str_format='%Y-%m-%d %H:%M:%S')

Time representation conversion

Python’s Datetime => String

Just a wrapper of strftime

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

  • L (string or list of strings) – Time as string(s)

  • Source

  • ——

  • https (//stackoverflow.com/questions/7999935/python-datetime-to-string-without-microsecond-component)

  • http (//www.jacksay.com/tutoriaux/bash-shell/bashshell-utilisation-commande-date.html)

geodezyx.conv.conv_time.dt2tuple(dtin)
geodezyx.conv.conv_time.dt2year_decimal(dtin)

Time representation conversion

Python’s Datetime => Decimal Year

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

L – Decimal Year(s)

Return type:

float or list/numpy.array of floats

geodezyx.conv.conv_time.dt2ymdhms(dtin, with_microsec=True)

Time representation conversion

Python’s Datetime => Lists of Years, Months, Days, Hours, Minutes, Seconds

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Python DateTime

  • with_microsec (bool) – if False : rounding the microsecs to the nearest sec

Return type:

tuple with year , month , day , hour , minute , second , microsecond

geodezyx.conv.conv_time.dt_2_sinex_datestr(dtin, short_yy=True, year_sep=':')

Time representation conversion

Python’s Datetime => SINEX time format

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime)

Returns:

  • dtout (str) – Date in SINEX format

  • year_sep (str) – year separator, usually :, but can also be empty

geodezyx.conv.conv_time.dt_2_sp3_datestr(dtin)

Time representation conversion

Python’s Datetime => SP3 time format

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime)

Returns:

dtout – Date in SP3 format

Return type:

str

geodezyx.conv.conv_time.dt_ceil(dtin)

Round a datetime object to the begining of the day

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime) – Datetime you want to round, default now. Can handle several datetimes in an iterable.

Returns:

dtout – Rounded Datetime

Return type:

datetime.datetime or list/numpy.array of datetime.datetime

geodezyx.conv.conv_time.dt_gpstime2dt_tai(dtgpsin, out_array=False)

Timescale conversion

Datetime in GPS Time Scale => Datetime in TAI Time Scale

Correct d the 19sec difference between GPS Time and TAI

Parameters:
  • dtgpsin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s) in GPS Time Scale. Can handle several datetimes in an iterable.

  • out_array (bool) – if iterable as input, force the output as a Numpy array

Returns:

L – Datetime(s) in TAI Time Scale

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

geodezyx.conv.conv_time.dt_gpstime2dt_utc(dtgpsin, out_array=False)

Time scale conversion

Datetime in GPS Time Scale => Datetime in UTC Time Scale

Correct both the Leap second and the 19sec difference between GPS Time and UTC

Parameters:
  • dtgpsin (datetime.datetime or list/numpy.array of datetime.datetime.) – Datetime(s) in GPS Time Scale. Can handle several datetimes in an iterable.

  • out_array (bool) – if iterable as input, force the output as a Numpy array

Returns:

L – Datetime(s) in UTC Time Scale

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

geodezyx.conv.conv_time.dt_improved(*args)
geodezyx.conv.conv_time.dt_in_local_timezone2posix(dtin)
geodezyx.conv.conv_time.dt_range(start_dt, end_dt, day_step=1, sec_step=0)

Range of datetime between a start and end (included)

Parameters:
  • start_dt (datetime.datetime) – Datetimes

  • end_dt (datetime.datetime) – Datetimes

Returns:

out_range – range of dates

Return type:

list of datetime.datetime

geodezyx.conv.conv_time.dt_round(dtin=None, roundTo=60)

Round a datetime object to any time laps in seconds

This function is depreciated !!! Use round_dt instead !!!

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime you want to round, default now. Can handle several datetimes in an iterable.

  • roundTo (int) – Closest number of seconds to round to, default 1 minute.

Returns:

dtout – Rounded Datetime

Return type:

datetime.datetime or list/numpy.array of datetime.datetime

geodezyx.conv.conv_time.dt_tai2dt_tt(dtin)

Time scale conversion

Python’s datetime in TAI => Python’s datetime in Terrestrial Time (TT)

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

  • L (list of datetime) – converted DateTimes

  • Source

  • ——

  • https (//en.wikipedia.org/wiki/Terrestrial_Time)

Note

Realization of the TT by the BIPM (restimation and correction by dozen of µsec) https://www.bipm.org/en/bipm-services/timescales/time-ftp/ttbipm.html

geodezyx.conv.conv_time.dt_tai2dt_utc(dtin)

Time scale conversion

Python’s datetime in TAI => Python’s datetime in UTC

(Wrapper to correct the leap second)

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

L – converted DateTimes

Return type:

list of datetime

Note

TAI is (currently) ahead of UTC

geodezyx.conv.conv_time.dt_utc2dt_tai(dtin)

Time scale conversion

Python’s datetime in UTC => Python’s datetime in TAI

(Wrapper to correct the leap second)

Parameters:

dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

Returns:

L – converted DateTimes

Return type:

list of datetime

Note

TAI is (currently) ahead of UTC

geodezyx.conv.conv_time.dt_utc2dt_ut1(dtin, dUT1)

Time scale conversion

Python’s datetime in UTC => Python’s datetime in UT1

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

  • dUT1 (float) – UT1-UTC in seconds.

Returns:

L – converted DateTimes

Return type:

list of datetime

geodezyx.conv.conv_time.dt_utc2dt_ut1_smart(dtin, df_eop_in, use_interp1d_obj=True, eop_interpolator=None)

Time scale conversion

Python’s datetime in UTC => Python’s datetime in UT1 using an EOP DataFrame provided by files_rw.read_eop_C04

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime.datetime) – Datetime(s). Can handle several datetimes in an iterable.

  • df_eop_in (DataFrame) – EOP DataFrame for the UT1-UTC provided by files_rw.read_eop_C04

  • use_interp1d_obj (TYPE, optional) – Use an interp1d_time Interpolator object for the EOP determination at the right epoch. Faster in recursive mode when dtin is a list/array The default is True.

  • eop_interpolator (interp1d_time object, optional) – The interp1d_time Interpolator object for the EOP determination Will be determined automatically inside the function The default is None.

Returns:

DESCRIPTION.

Return type:

TYPE

geodezyx.conv.conv_time.epo_epos_converter(inp, inp_type='mjd', out_type='yyyy', verbose=False)

Frontend for the GFZ EPOS epo converter

Parameters:
  • inp (string or int) – the input day, like 58773 2019290 20754 …

  • inp_type (str) – An output format managed by epo command : wwwwd,yyddd,yyyyddd,yyyymmdd

  • out_type (str) – An output format managed by epo command : mjd,yyyy,yy,ddd,mon,dmon,hour,min,sec,wwww,wd

  • verbose (bool) – verbose mode

Returns:

year – Year as integer. Years preceding 1 A.D. should be 0 or negative. The year before 1 A.D. is 0, 10 B.C. is year -9.

Return type:

int

geodezyx.conv.conv_time.extract_leapseconds_from_system()

Extract a leap seconds list from the system (Ubuntu-based systems) If the leap seconds file is not found, a hardcoded list is returned

Note

Universal Time (UT1) and International Atomic Time (TAI) were defined as equal in 1958. When UTC was introduced in 1972, UT1 had shifted by around 10 seconds in relation to TAI. We therefore chose an initial offset of 10 seconds between UTC and TAI.

the initial 10 sec are added by default in frontend find_leapsecond()

geodezyx.conv.conv_time.find_leapsecond(dtin, leapsec_lis_inp=[(datetime.datetime(1972, 1, 1, 0, 0), 0), (datetime.datetime(1972, 7, 1, 0, 0), 1), (datetime.datetime(1973, 1, 1, 0, 0), 2), (datetime.datetime(1974, 1, 1, 0, 0), 3), (datetime.datetime(1975, 1, 1, 0, 0), 4), (datetime.datetime(1976, 1, 1, 0, 0), 5), (datetime.datetime(1977, 1, 1, 0, 0), 6), (datetime.datetime(1978, 1, 1, 0, 0), 7), (datetime.datetime(1979, 1, 1, 0, 0), 8), (datetime.datetime(1980, 1, 1, 0, 0), 9), (datetime.datetime(1981, 7, 1, 0, 0), 10), (datetime.datetime(1982, 7, 1, 0, 0), 11), (datetime.datetime(1983, 7, 1, 0, 0), 12), (datetime.datetime(1985, 7, 1, 0, 0), 13), (datetime.datetime(1988, 1, 1, 0, 0), 14), (datetime.datetime(1990, 1, 1, 0, 0), 15), (datetime.datetime(1991, 1, 1, 0, 0), 16), (datetime.datetime(1992, 7, 1, 0, 0), 17), (datetime.datetime(1993, 7, 1, 0, 0), 18), (datetime.datetime(1994, 7, 1, 0, 0), 19), (datetime.datetime(1996, 1, 1, 0, 0), 20), (datetime.datetime(1997, 7, 1, 0, 0), 21), (datetime.datetime(1999, 1, 1, 0, 0), 22), (datetime.datetime(2006, 1, 1, 0, 0), 23), (datetime.datetime(2009, 1, 1, 0, 0), 24), (datetime.datetime(2012, 7, 1, 0, 0), 25), (datetime.datetime(2015, 7, 1, 0, 0), 26), (datetime.datetime(2017, 1, 1, 0, 0), 27)], apply_initial_delta=True)

Find the TAI-UTC leap second for a given datetime

Parameters:
  • dtin (datetime.datetime) – Epoch for which the leap second is researched

  • leapsec_lis_inp (list, optional) – A list of leap second, provided by extract_leapseconds_from_system() automatically determined if given list is empty

  • apply_initial_delta (bool, optional) – apply the initial delta of 10 seconds between UTC and TAI See note below default is True

Returns:

leapsec_out – The leap second for the given epoch

Return type:

int

Note

Universal Time (UT1) and International Atomic Time (TAI) were defined as equal in 1958. When UTC was introduced in 1972, UT1 had shifted by around 10 seconds in relation to TAI. We therefore chose an initial offset of 10 seconds between UTC and TAI.

In 1972, the leap-second system was introduced so that the broadcast UTC seconds could be made exactly equal to the standard SI second, while still maintaining the UTC time of day and changes of UTC date synchronized with those of UT1 (the solar time standard that superseded GMT).[11] By then, the UTC clock was already 10 seconds behind TAI, which had been synchronized with UT1 in 1958, but had been counting true SI seconds since then. After 1972, both clocks have been ticking in SI seconds, so the difference between their readouts at any time is 10 seconds plus the total number of leap seconds that have been applied to UTC (37 seconds as of January 2017).

geodezyx.conv.conv_time.gpstime2dt(gpsweek, gpsdow_or_seconds, dow_input=True, output_time_scale='utc')

Time scale & representation conversion

GPS Time => Python’s datetime

Parameters:
  • gpsweek (int or iterable of int) – year, days of year

  • gpsdow_or_seconds (int or iterable of int) – Day of Week OR Seconds in Weeks

  • dow_input (bool) – select if Day of Week (True) OR Seconds in Weeks (False)

  • output_time_scale (str) – gives the wished timescale : “utc”, “tai”, “gps”

Returns:

L – DateTime

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

Note

Only reliable at the day level for the moment

the leapsecond is found only after a first calc without leapsecond it can be some side effects when the input time is close to a leap second jump

https://gist.github.com/jeremiahajohnson/eca97484db88bcf6b124

geodezyx.conv.conv_time.gpsweek_decimal2dt(gpsweekdec_in, output_time_scale='utc')

Time representation conversion

Decimal GPS Week => Python’s datetime

Parameters:
  • gpsweekdec_in (float or list/numpy.array of float) – GPS week in decimal form.

  • output_time_scale (str) – gives the wished timescale : “utc”, “tai”, “gps”

Returns:

L – converted DateTimes

Return type:

list of datetime

geodezyx.conv.conv_time.jjul_cnes2dt(jjulin)

Time representation & scale conversion

Julian Day CNES => Python’s Datetime

Parameters:

jjulin (float/int or list/numpy.array of float/int.) – Julian Day CNES. Can handle several float/int in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

Note

Julian Day CNES starts at 0h Jan 1, 1950 (JD − 2433282.5)

https://www.aviso.altimetry.fr/fr/donnees/outils/jours-calendaires-ou-jours-juliens.html

geodezyx.conv.conv_time.leapseconds_harcoded_list()

Returns a hardcoded list of leap seconds.

This function provides a list of tuples where each tuple contains a datetime object representing the date and time when a leap second was added, and an integer representing the total number of leap seconds that have been added up to that date.

Returns:

A list of tuples where each tuple contains: - datetime: The date and time when a leap second was added. - int: The total number of leap seconds added up to that date.

Return type:

list of tuple

Note

The list is hardcoded and may be outdated if the IERS’s bulletin C has been updated. The last known update is included in the warning message.

Universal Time (UT1) and International Atomic Time (TAI) were defined as equal in 1958. When UTC was introduced in 1972, UT1 had shifted by around 10 seconds in relation to TAI. We therefore chose an initial offset of 10 seconds between UTC and TAI.

the initial 10 sec are added by default in frontend find_leapsecond()

geodezyx.conv.conv_time.leapseconds_parse_post2404(leapsec_file_path='/usr/share/zoneinfo/leap-seconds.list')

Parses the leap seconds file and returns a list of leap seconds. This function is compatible with post Ubuntu 24.04 versions.

This function reads a file containing leap second information and extracts the timestamps and the corresponding leap second values. The timestamps are converted to datetime objects.

Parameters:

leapsec_file_path (str, optional) – The path to the leap seconds file. The default is ‘/usr/share/zoneinfo/leap-seconds.list’.

Returns:

A list of tuples where each tuple contains: - datetime: The date and time when a leap second was added. - int: The total number of leap seconds added up to that date.

Return type:

list of tuple

Note

The list is hardcoded and may be outdated if the IERS’s bulletin C has been updated. The last known update is included in the warning message.

Universal Time (UT1) and International Atomic Time (TAI) were defined as equal in 1958. When UTC was introduced in 1972, UT1 had shifted by around 10 seconds in relation to TAI. We therefore chose an initial offset of 10 seconds between UTC and TAI.

the initial 10 sec are added by default in frontend find_leapsecond() thus, they are substracted here.

geodezyx.conv.conv_time.leapseconds_parse_pre2404(leapsec_file_path='/usr/share/zoneinfo/right/UTC')

Parses the leap seconds file and returns a list of leap seconds. This function is compatible with pre Ubuntu 24.04 versions.

This function reads a file containing leap second information and extracts the timestamps and the corresponding leap second values. The timestamps are converted to datetime objects.

Parameters:

leapsec_file_path (str, optional) – The path to the leap seconds file. The default is ‘/usr/share/zoneinfo/right/UTC’.

Returns:

A list of tuples where each tuple contains: - datetime: The date and time when a leap second was added. - int: The total number of leap seconds added up to that date.

Return type:

list of tuple

Note

The list is hardcoded and may be outdated if the IERS’s bulletin C has been updated. The last known update is included in the warning message.

Universal Time (UT1) and International Atomic Time (TAI) were defined as equal in 1958. When UTC was introduced in 1972, UT1 had shifted by around 10 seconds in relation to TAI. We therefore chose an initial offset of 10 seconds between UTC and TAI.

the initial 10 sec are added by default in frontend find_leapsecond()

http://stackoverflow.com/questions/19332902/extract-historic-leap-seconds-from-tzdata

geodezyx.conv.conv_time.matlab_time2dt(matlab_datenum)

Time representation conversion

MATLAB Time => Datetime

Parameters:

matlab_datenum (float or list/numpy.array of float) – MATLAB time(s). Can handle several time floats in a list.

Returns:

python_datetime – Converted Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime.datetime

geodezyx.conv.conv_time.ntp2dt(ntp_timestamp_inp)

Time representation conversion

NTP Time => Python’s Datetime

Convert an NTP timestamp to a Python datetime object.

Parameters:

ntp_timestamp_inp (float) – The NTP timestamp to be converted.

Returns:

The corresponding datetime object.

Return type:

datetime

geodezyx.conv.conv_time.numpy_dt2dt(numpy_dt_in)

Time representation conversion

Numpy datetime64 object => Python’s Datetime

Parameters:

numpy_dt_in (numpy datetime64 object) – numpy datetime64 object

Returns:

  • dt (datetime.datetime or list/numpy.array of datetime.datetime) – Converted Datetime(s) If the input is a Pandas Series, the output is forced as an array

  • Source

  • ——

  • https (//gist.github.com/blaylockbk/1677b446bc741ee2db3e943ab7e4cabd)

geodezyx.conv.conv_time.pandas_timestamp2dt(timestamp_in)

Time Python type conversion

Pandas’s Timestamp => Python’s Datetime

Parameters:

timestamp_in (Timestamp or list/numpy.array of Timestamp.) – Pandas’s Timestamp(s). Can handle several datetimes in an iterable.

Returns:

L – Time as Datetime(s)

Return type:

Datetime or list of Datetime

geodezyx.conv.conv_time.posix2dt(posixin, out_array=False)

Time representation conversion

POSIX Time => Python’s Datetime

Parameters:
  • posixin (float or list/numpy.array of floats.) – POSIX Time. Can handle several time in a list.

  • out_array (bool) – if iterable as input, force the output as a Numpy array

Returns:

L – Converted Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.

geodezyx.conv.conv_time.posix2dt_in_local_timezone(posixin)
geodezyx.conv.conv_time.rinexname2dt(rinexpath)

Time representation conversion

RINEX Name (short or long naming convention) => Python’s Datetime

Extract the date in a RINEX name

Parameters:

rinexpath (string) – RINEX path. The RINEX basename will be extracted automatically.

Returns:

dt – Datetime

Return type:

datetime

geodezyx.conv.conv_time.roundTime(*args)

Wrapper of dt_round for legacy reasons

This function is depreciated !!! Use round_dt instead !!!

geodezyx.conv.conv_time.round_dt(dtin, round_to, python_dt_out=True, mode='round')

Round a datetime object to any time laps in seconds

Parameters:
  • dtin (datetime.datetime or list/numpy.array of datetime) – Datetime you want to round Can handle several datetimes in an iterable.

  • round_to (str) –

    The way to round the datetime.

    It follows the Pandas’ Series conventions, e.g.:

    • one-day rounding: ‘1D’

    • one-minute rounding: ‘1min’

    • one-second rounding: ‘1s’

    Full list is in the Note’s link

  • python_dt_out (bool, optional) – If True, it returns the date as a legacy Python’s DateTime. If False, it returns a Pandas Timestamp. The default is True.

  • mode (str) – define the way you want to round the values: ‘round’ (i.e. the nearest), ‘floor’, ‘ceil’ The default if ‘round’

Returns:

dtout – Rounded Datetime

Return type:

datetime.datetime or list/numpy.array of datetime.datetime

geodezyx.conv.conv_time.sp3name2dt(sp3path)

Time representation conversion

Orbit SP3 Name (legacy/new naming convention) => Python’s Datetime

Extract the date in a Orbit SP3 name

Parameters:

sp3path (string) – Orbit SP3 path. The basename will be extracted automatically.

Returns:

dt – Datetime

Return type:

datetime

geodezyx.conv.conv_time.sp3name_leg_2dt(sp3path)

Time representation conversion

Orbit SP3 Name (old/legacy naming convention) => Python’s Datetime

Extract the date in a Orbit SP3 name

Parameters:

sp3path (string) – Orbit SP3 path. The basename will be extracted automatically.

Returns:

dt – Datetime

Return type:

datetime

geodezyx.conv.conv_time.sp3name_v3_2dt(sp3path)

Time representation conversion

Orbit SP3 Name (new naming convention) => Python’s Datetime

Extract the date in a Orbit SP3 name

Parameters:

sp3path (string) – Orbit SP3 path. The basename will be extracted automatically.

Returns:

dt – Datetime

Return type:

datetime

geodezyx.conv.conv_time.statname_dt2rinexname(statname, datein, rnxtype='d.Z', session_a_instead_of_daily_session=False)

Time representation conversion

Python’s Datetime (and station name) => RINEX name

Create a RINEX name from a station name and date

Parameters:
  • statname (string) – name of the station if is more than 4 characters long (typically for 9-chars. names), only the 4 first characters will be used

  • datein (datetime.datetime) – date of the wished RINEX name

  • rnxtype (string) – extension of the RINEX (“d.Z”,”.o”) …

  • session_a_instead_of_daily_session (bool) – if True, gives an hourly session name (a,b,c …) instead of a daily session (0)

Returns:

rinexname – The name of the RINEX

Return type:

string

geodezyx.conv.conv_time.statname_dt2rinexname_long(statname, datein, country='XXX', data_source='R', file_period='00U', data_freq='00U', data_type='MO', format_compression='crx.gz', preset_type=None)

Time representation conversion

Python’s Datetime (and station name) => RINEX long name convention

Create a RINEX name from a station name, date and ancillary parameters

Parameters:
  • statname (string) – name of the station can be a 4 or 9 char.

  • datein (datetime.datetime) – date of the wished RINEX name

  • country (string) – optional. the 3char. country code if given, will replace the one in an input 9-char statname default value is “XXX”

  • data_source (str, optional) – Data Source. R – From Receiver, data using vendor or other software S – From data Stream (RTCM or other) U – Unknown The default is “R”.

  • file_period (str, optional) – File Period 15M–15 Minutes 01H–1 Hour 01D–1 Day 01Y–1 Year 00U-Unspecified The default is “00U”.

  • data_freq (str, optional) –

    data frequency. None is allowed (for Navigation RINEX)

    XXC – 100 Hertz XXZ – Hertz, XXS – Seconds, XXM – Minutes, XXH – Hours, XXD – Days XXU – Unspecified The default is “00U”.

  • data_type (str, optional) –

    Two characters represent the data type: GO - GPS Obs. RO - GLONASS Obs. EO - Galileo Obs. JO - QZSS Obs. CO - BDS Obs. IO – NavIC/IRNSS Obs. SO - SBAS Obs. MO - Mixed Obs. GN - Nav. GPS RN - GLONASS Nav. EN - Galileo Nav. JN - QZSS Nav. CN - BDS Nav. IN – NavIC/IRNSS Nav. SN - SBAS Nav. MN – Mixed Nav. (All GNSS Constellations) MM-Meteorological Observation

    The default is “MO”.

  • format_compression (string) – extension of the RINEX (“rnx”,”crz”,”crz.gz”) … The default is ‘crz.gz’.

  • preset_type (str, optional) – takes “daily” or “hourly” values. set the most common data_freq and file_period for an hourly or daily session. The default is None.

Returns:

out_rnx_name – The name of the RINEX.

Return type:

str

geodezyx.conv.conv_time.str_date2dt(strin)

Time representation conversion

String => Python’s Datetime

Wrapper of dateutil.parser.parse

The input string should looks like a timestamp

Parameters:

strin (string or list/numpy.array of strings.) – string(s). Can handle several datetimes in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.strdate2dt(strin)

Time representation conversion

String => Python’s Datetime

Wrapper of dateutil.parser.parse

The input string should looks like a timestamp

Parameters:

strin (string or list/numpy.array of strings.) – string(s). Can handle several datetimes in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.string_date2dt(strin)

Time representation conversion

String => Python’s Datetime

Wrapper of dateutil.parser.parse

The input string should looks like a timestamp

Parameters:

strin (string or list/numpy.array of strings.) – string(s). Can handle several datetimes in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.tgipsy2dt(tin)

Time representation conversion

GIPSY Time => Datetime

Parameters:

tin (float or list/numpy.array of float) – GIPSY time(s). Can handle several time float in a list.

Returns:

dtout – Converted Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime

Note

GIPSY time is not the ‘real’ J2000 but only counted starting from 1st January 2000 at Noon

geodezyx.conv.conv_time.trimble_file2dt(trmfile_in)

Time representation conversion

Trimble raw data file => Python’s Datetime

Trimble file exemple : CASG202101070000A.T02

Parameters:

trmfile_in (string or list/numpy.array of string.) – Trimble raw data file as string. Can handle several string in an iterable. Will extract the basename of a path.

Returns:

dtout – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.tup_or_lis2dt(lisin)

Time representation conversion

Date-looking strings => Python’s datetime

Parameters:

lisin (iterable (tuple/list/numpy.array) of string.) – list of Date-looking strings like : [“2018”,”12”,”31”,”12”,”30”,”00”]

Returns:

L – converted DateTimes

Return type:

list of datetime

geodezyx.conv.conv_time.utc2gpstime(year, month, day, hour, minu, sec)

Convert UTC Time to GPS Time

Parameters:
  • year (int) – input UTC time.

  • month (int) – input UTC time.

  • day (int) – input UTC time.

  • hour (int) – input UTC time.

  • minu (int) – input UTC time.

  • sec (int) – input UTC time.

Returns:

Converted epoch in GPS time, i.e. GPS Week and GPS seconds in week.

Return type:

gpsweek,gpssecs

geodezyx.conv.conv_time.year_decimal2dt(yearin)

Time representation conversion

Decimal Year => Python’s Datetime

Parameters:

yearin (float or list/numpy.array of floats.) – Decimal year(s). Can handle several floats in an iterable.

Returns:

L – Datetime(s)

Return type:

datetime or list of datetime.

geodezyx.conv.conv_time.ymdhms2dt(y=0, mo=0, d=0, h=0, mi=0, s=0, ms=0)

Improved time representation conversion to Datetime

can manage list, array, or floats as input can manage NaN too (return POSIX 0 epoch if NaN)

Parameters:
  • y (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • mo (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • d (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • h (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • mi (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • s (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

  • ms (float or list/numpy.array of floats.) – year , month… . Can handle several times in lists.

Returns:

Converted Datetime(s)

Return type:

Datetime

geodezyx.conv.conv_time.ymdhms_vectors2dt(yrlis, mlis, dlis, hlis, minlis, slis)

Time representation conversion

Lists of Years, Months, Days, Hours, Minutes, Seconds => Python’s Datetime

Parameters:
  • yrlis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

  • mlis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

  • dlis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

  • hlis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

  • minlis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

  • slis (float or list/numpy.array of floats.) – Lists of Years, Months, Days, Hours, Minutes, Seconds

Returns:

L – Datetime(s)

Return type:

datetime.datetime or list/numpy.array of datetime.datetime.