geodezyx.time_series package
Submodules
geodezyx.time_series.ts_class module
Created on Fri Aug 2 13:55:33 2019
@author: psakicki
- class geodezyx.time_series.ts_class.Attitude(R=0, P=0, Y=0, T=0, sR=0, sP=0, sY=0, devID='NULL', angtype='deg')
Bases:
object
- Qcalc()
- RPYget()
- RPYset(R=0, P=0, Y=0, sR=0, sP=0, sY=0)
- Tset(T=0)
- class geodezyx.time_series.ts_class.Point(A=0.0, B=0.0, C=0.0, T=0.0, initype='XYZ', sA=0.0, sB=0.0, sC=0.0, name='noname', anex=None)
Bases:
object
- ENUcalc_pt(refENU)
- ENUset(E=nan, N=nan, U=nan, sE=nan, sN=nan, sU=nan)
- FLHset(F=0, L=0, H=0, sF=0, sL=0, sH=0)
- NEDset(N=nan, E=nan, D=nan, sN=nan, sE=nan, sD=nan)
- Tset(T=0)
- UTMcalc_pt(ellips='wgs84')
- UTMset(Eutm=nan, Nutm=nan, Uutm=nan, sEutm=nan, sNutm=nan, sUutm=nan)
- XYZset(X=0, Y=0, Z=0, sX=0, sY=0, sZ=0)
- add_offset(dA, dB, dC)
- helmert_trans(params='itrf2008_2_etrf2000', invert=False)
- keysanex()
- velocity_trans(vx, vy, vz, epoc_init='auto', epoc_end='auto')
auto == epoc of the measures
- class geodezyx.time_series.ts_class.TimeSerieObs(typeobs='NULL', filepath='')
Bases:
object
LES DIFFERENCES AVEC TSPOINT * Les objets ne contiennent qu’un type de données sous une seul forme (a la difference d’un point qui peut exister sous plusieurs formes) * Dans un fichier en input, il peut y avoir plusieurs “devices”
=> les fonctions de lectures produisent donc obligatoirement des listes de TS (le cas échéant une liste à 1 élt) => la methode readfile() nécessite donc l’indice de la device
- add_obs(inObs)
- aleaobs()
- del_data()
- enddate()
- interp_get(T)
- interp_set(interptype='slinear')
- interval_nominal()
- meta_set(path='', devID='NULL', name='')
- plot(diapt=10, alpha=0.8, fig=1, new_style=True)
- readfile(filein, indtab=0)
- startdate()
- timewin(windows, mode='keep')
IL EST TRES DANGEREUX DE L’APPLIQUER UN FENETRAGE A SOI MEME
- to_list()
- class geodezyx.time_series.ts_class.TimeSeriePoint(stat='STAT')
Bases:
object
- ENUcalc(refENU)
Method to determine the ENU components based on a reference point
- Parameters:
refENU (Point Object or TimeSeriePoint Object) – Reference point.
- Return type:
None.
- ENUcalc_from_first_posi()
Method to determine the ENU components based directly on the mean/median position
- Return type:
None.
- ENUcalc_from_mean_posi(mean_type='median')
Method to determine the ENU components based directly on the mean/median position
- Return type:
None.
- UTMcalc()
Method to determine the UTM E and N projected coordinates
- Return type:
None.
- add_offset(dA, dB, dC)
NOTE 160415 : add_offset as method are hazardous … use fct add_offset_ts instead
- add_point(inPoint)
Method to add a Point in the TimeSerie Object
- Parameters:
inPoint (Point Object)
- Return type:
None.
- aleapt()
Method to get a random Point in the TimeSeries
- Return type:
Point Object
- decimate(dec)
Method to decimate a TimeSerie
- Parameters:
dec (int) – keep 1/dec point in the TimeSerie.
- Return type:
None.
- del_data()
Method to purge the data in the TimeSeriePoint
- Return type:
None.
- discont_manu_click(fig=1)
manual discontinuities are both recorded in the “main” discont list and in a new discont_manu list, thus the manual discontinuites can be identified
- IMPORTANTcursor objects (multi , cid)
must be stored as global variables like this : multi , cid = tsout.discont_manu_click()
- NOTEThis method was created before point_n_click_plot():
this other one is more complete both has to be merged ASAP !!!!!
- enddate()
Method to get the last epoch of the data in the TimeSerie
- Return type:
DateTime
- find_point(tin, tol=0.001, stop_when_found=True)
Method to find a specific point according to its timestamp
- Parameters:
tin (float or datetime) – timestamp of the researched point.
tol (float, optional) – tolerence of the research. The default is 0.001.
stop_when_found (bool, optional) – Stop the research when a point is found. The default is True.
- Returns:
Point Object – Point Found.
int or list of int – index of the point.
- from_list(T, A, B, C, coortype='XYZ', sA=[], sB=[], sC=[])
Method to load data from lists to the TimeSerie
- Parameters:
T (float) – Time.
A (list of float) – X, F (latitude), E..
B (list of float) – Y, L (longitude), N.
C (list of float) – Z, H (hight), U.
coortype (str, optional) – The coordinates type. The default is ‘XYZ’.
sA (list of float, optional) – sigma of A component. The default is [].
sB (list of float, optional) – sigma of B component. The default is [].
sC (list of float, optional) – sigma of C component. The default is [].
- Return type:
None.
- from_uniq_point(Point, startdate, enddate, pas=1)
- initype()
- interp_get(T, coortype='ENU')
Method to get the coordinate interpolators
- Parameters:
T (float or list of float) – Time (IN POSIX Time) where the interpolation is wished.
coortype (str, optional) – The coordinates type. The default is ‘ENU’.
- Returns:
DESCRIPTION.
- Return type:
tsout
- interp_set(interptype='slinear')
Method to set the coordinate interpolators
- Parameters:
interptype (TYPE, optional) – Interpolation type. The default is ‘slinear’.
- Return type:
None.
- interval_nominal()
Method to get the nominal internal between two epochs.
- Returns:
interval nominal.
- Return type:
float
- len_period(output_seconds=False)
Method to get the period length
- Return type:
timedelta or
- mean_posi(coortype='XYZ', outtype='point', mean_type='median')
Method to determine the mean position of the TimeSerie
- Parameters:
coortype (TYPE, optional) – The coordinates type. The default is ‘XYZ’.
outtype (TYPE, optional) – ‘point’ or ‘tuple’. The default is ‘point’.
mean_type (TYPE, optional) – ‘mean’ or ‘median’. The default is ‘median’.
- Return type:
Point or coordinates tuple
- meta_set(path='', stat='STAT', name='')
Set meta data about the TimeSerie
- Parameters:
path (str, optional) – file path. The default is ‘’.
stat (str, optional) – station 4-char. code. The default is ‘STAT’.
name (str, optional) – free name of for the TS, like the experience, the periode , the software … The default is ‘’.
- Return type:
None.
- property nbpts
Method to have the length of the TimeSerie
- Returns:
Length of the TimeSerie.
- Return type:
int
- plot(coortype='ENU', diapt=2, alpha=0.8, fig=1, errbar=True, new_style=True, symbol='.', errbar_width=1, ylim=None)
Plot data in a TimeSerie Object
- Parameters:
coortype (str, optional) – The coordinates type. The default is ‘ENU’.
diapt (float, optional) – Point diamaeter. The default is 2.
alpha (float, optional) – Alpha (transparency) of points. The default is 0.8.
fig (int or Figure object, optional) – Figure ID where the data will be plotted can accept a int (id of a Figure) OR the figure Object itself. The default is 1.
errbar (bool, optional) – Plot the error bars. The default is True.
new_style (bool, optional) – Plot in a new style. The old style is only kept for legacy The default is True.
symbol (str, optional) – symbol. The default is ‘.’.
errbar_width (TYPE, optional) – coefficient for the error bar size. The default is 1.
- Return type:
The matplotlib Figure object.
- plot_discont(fig=1)
Plot discontinuties of a TimeSerie Object contained in discont list
- Parameters:
fig (int or Figure object, optional) – Figure ID where the data will be plotted can accept a int (id of a Figure) OR the figure Object itself. The default is 1.
- Return type:
None.
- readfile(filein)
Method to read the data form a file Should be used with care
- Parameters:
filein (str) – path of the file.
- Return type:
None.
- remove_duplicate_pts(coortype='XYZ')
- set_discont(indiscont)
Method to set the discontinuties list
- Parameters:
indiscont (list of time) – Discontinuities in the TimeSerie.
- Return type:
None.
- sort()
Internal method to sort the point in the TimeSerie Object
- Return type:
None.
- startdate()
Method to get the first epoch of the data in the TimeSerie
- Return type:
DateTime
- time_win(windows, mode='keep')
IL EST TRES DANGEREUX DE L’APPLIQUER UN FENETRAGE A SOI MEME
- to_dataframe(coortype='XYZ')
Export the TimeSerie Object as DataFrame
- Parameters:
coortype (str or iterable of str.) – The coordinates type exported to the DataFrame. ‘XYZ’, ‘FLH’, ‘ENU’, ‘NED’ can be also an iterable like (‘XYZ’,’FLH’) The default is ‘XYZ’.
- Returns:
DF – output DataFrame.
- Return type:
DataFrame
- to_list(coortype='XYZ', specific_output=None, time_as_datetime=False)
Export the TimeSerie Object as Lists (Numpy Arrays)
- Parameters:
coortype (str, optional)
list. (The coordinates type exported to the)
'XYZ'. (The default is)
specific_output (int, optional) – ask for a specific list, ranges between 0 and 6. The default is None.
time_as_datetime (bool, optional) – if True the Time list is exported in datetime if False the Time list is exported in Posix time
- Returns:
A,B,C,T,sA,sB,sC – A = X, F (latitude), E. B = Y, L (longitude), N. C = Z, H (hight), U. T = Time sA = sigma of A component sB = sigma of B component sC = sigma of C component
- Return type:
lists
- class geodezyx.time_series.ts_class.point_n_click_plot
Bases:
object
This method allow to do “point and click” on a plot, to localize offsets for instance
Usage
Data have to be ploted already in a figure
PnC = point_n_click_plot() multi , cid = PnC(fig=1,Xdata_are_time=True) PnC.selectedX
i.e.
Create an object point_n_click_plot (here it is PnC in the exemple below)
Call the object like a function with as 1st argument the id of the plot figure or the plot figure itself
Make your selection using the SPACE key
Get your results in a list called PnC.selectedX
Important
cursor objects (i.e. multi & cid) must be stored as global variables when you call the method like this :
multi , cid = PnC(fig=1)
geodezyx.time_series.ts_export module
Created on Fri May 12 15:56:33 2023
@author: psakicki
- geodezyx.time_series.ts_export.export_ts(ts, outdir, coordtype='ENU', outprefix='', write_header=False)
export the timeserie
write_header not well implemented !!!
- geodezyx.time_series.ts_export.export_ts_as_hector_enu(tsin, outdir, outprefix, coordtype='ENU')
export to a HECTOR .enu (and not .neu !) compatible format This format is simpler : just gives MJD E N U
This format is necessary to force a sampling period.
outfile will be writed in /outdir/outprefixSTAT.enu
- geodezyx.time_series.ts_export.export_ts_as_midas_tenu(tsin, outdir, outprefix, coordtype='ENU', export_step=True)
export to a MIDAS .tneu compatible format
outfile will be writed in /outdir/outprefixSTAT.tneu
if export_step == True: export a step file as /outdir/outprefixSTAT.step
- geodezyx.time_series.ts_export.export_ts_as_neu(tsin, outdir, outprefix, coordtype='ENU')
export to a HECTOR .neu compatible format
outfile will be writed in /outdir/outprefixSTAT.neu
NB: The XYZ mode is quite dirty (191001)
- geodezyx.time_series.ts_export.export_ts_as_pbo_pos(tsin, outdir, outprefix='', force=None, force_1st_pt_as_ref=True, verbose=False)
Write a time series in GAMIT/GLOBK PBO pos format
- Parameters:
idir – output directory
outprefix – if not blank then the output pos file will be CODE_add_key.pos, CODE.pos otherwise.
force – set force to ‘data’ or ‘data_xyz’ to force pos to be written from .data or .data_xyz
- :note1:default behaviour (force = None)
if data and data_xyz are not None, then print them independently if there are data only, then uses X0,Y0,Z0 to write data_xyz if there are data_xyz only, recreate data and write it
- geodezyx.time_series.ts_export.export_ts_figure_pdf(fig, export_path, filename, close=False)
fig can accept a int (id of a Figure) OR the figure Object itself
- geodezyx.time_series.ts_export.export_ts_plot(tsin, export_path, coortype='ENU', export_type=('pdf', 'png'), plot_B=False, close_fig_after_export=True)
Very beta … to be implemented : merge w/ the export_figure_pdf fct
geodezyx.time_series.ts_fcts module
Created on Fri Aug 2 17:38:41 2019
@author: psakicki
- geodezyx.time_series.ts_fcts.add_offset_point(ptin, dA, dB, dC, coortype='ENU')
ONLY IMPLEMENTED FOR ENU FOR THE MOMENT 150415 : remark still necessary ???
- coortype == ‘UXYZ’ :
specific case where we correct an Up offset directly in the XYZ coords very usefull for an antenna offset in for a moving GPS (but works only for the up)
- geodezyx.time_series.ts_fcts.add_offset_smart_for_GINS_kine(tsin, tslist_offset_3ple, list_windows, coortype='XYZ')
tslist_offset_3ple : list of len N containing (dX,dY,dZ) offsets list_windows : list of len N-1 containing dates of changes
- geodezyx.time_series.ts_fcts.add_offset_ts(tsin, dA, dB, dC, coortype='ENU')
return a copy of the tsin (tsin won’t be affected)
- coortype == ‘UXYZ’ :
specific case where we correct an Up offset directly in the XYZ coords very usefull for an antenna offset in for a moving GPS (but works only for the up)
- geodezyx.time_series.ts_fcts.baselines_calc(ts_list, plani_only=False, substract_offset=<function median>, symetric_calc=False, symetric_storage=True)
- Parameters:
ts_list (list) – list of TimeSeries.
plani_only (bool, optional) – If True, compute the baseline varation on the East and North component only. The default is False.
substract_offset (function or None, optional) – A function to substract the offset. Can be np.mean (substract the mean value), np.median (substract the median value), or lambda x: x[0] (substract the 1st value) The default is np.median.
symetric_calc (bool, optional) – If True, compute the baseline variation 2 times, for stat1 > stat2 and stat2 > stat1 Might be useful to compare planimetic computation The default is False.
symetric_storage (bool, optional) – If True, store the baseline variation 2 times,
dictstore[stat1][stat2]
anddictstore[stat2][stat1]
symetric_calc
overrides this option The default is True.
- Returns:
dictstore – A dictionnary of dictionnaries of Pandas Series, containing the baseline variations e.g.
dictstore[stat1][stat2] = bl_series
- Return type:
dict
- geodezyx.time_series.ts_fcts.bool_cleaner(tsin, boollist, verbose=False)
A partir d’une liste de bool de meme longeur que le nbre de points on ne conserve que les points True
- geodezyx.time_series.ts_fcts.compar(tstup, coortype='ENU', seuil=3.0, win=[], mode='keep', Dtype='2D3D', namest=0, namend=10, alpha=0.8, diapt=5, verbose=True, print_report=True, plot=True, interp=True)
Compare time series data.
This function compares multiple time series data by calculating differences between a reference time series and other time series. It supports various coordinate types and can perform outlier cleaning using the Median Absolute Deviation (MAD) method.
- Parameters:
tstup (tuple of TimeSeriePoint) – Tuple of time series to compare. The first one is the reference.
coortype (str, optional) – Coordinate type (‘ENU’, ‘XYZ’, etc.). Default is ‘ENU’.
seuil (float, optional) – Threshold for MAD cleaning. Default is 3.
win (list, optional) – Time window for comparison. Default is an empty list.
mode (str, optional) – Mode for time window (‘keep’ or ‘del’). Default is ‘keep’.
Dtype (str, optional) – Type of distance calculation (‘2D’, ‘3D’, ‘2D3D’). Default is ‘2D3D’.
namest (int, optional) – Start index for name slicing. Default is 0.
namend (int, optional) – End index for name slicing. Default is 10.
alpha (float, optional) – Alpha value for plotting. Default is 0.8.
diapt (float, optional) – Marker size for plotting. Default is 5.
verbose (bool, optional) – If True, print detailed logs. Default is True.
print_report (bool, optional) – If True, print comparison report. Default is True.
plot (bool, optional) – If True, generate comparison plots. Default is True.
interp (bool, optional) – If True, perform interpolation. Default is True.
- Returns:
output – If plot is True, returns a tuple (dicolist, fig). Otherwise, returns dicolist.
- Return type:
list or tuple
- geodezyx.time_series.ts_fcts.compar_elts_in_ts(ts1, ts2)
ts2 must contains less elts than ts1 (ts2 = cleaned one)
- geodezyx.time_series.ts_fcts.compar_plot(dico_list_in, namest=0, namend=10, alpha=0.8, diapt=1.5, new_style=True, colormap='gnuplot')
Generate comparison plots for time series data.
This function creates plots to compare multiple time series data. It supports different coordinate types and allows customization of plot appearance.
- Parameters:
dico_list_in (list of dict) – List of dictionaries containing time series data to plot.
namest (int, optional) – Start index for name slicing. Default is 0.
namend (int, optional) – End index for name slicing. Default is 10.
alpha (float, optional) – Alpha value for plot markers. Default is 0.8.
diapt (float, optional) – Marker size for plot markers. Default is 1.5.
new_style (bool, optional) – If True, use a new style for the plots. Default is True.
colormap (str, optional) – Colormap to use for the plots. Default is ‘gnuplot’.
- Returns:
fig – The generated figure containing the comparison plots.
- Return type:
matplotlib.figure.Figure
- geodezyx.time_series.ts_fcts.decimate_cleaner(tsin, minval, in_place=False)
in_place DOES’NT WORK !!!
- geodezyx.time_series.ts_fcts.decimate_cleaner_2(tsin, N, in_place=False)
keep a value every N vals
- geodezyx.time_series.ts_fcts.detrend_ts(tsin, coortype='ENU', t_origin=None)
- geodezyx.time_series.ts_fcts.dist_btwn_2pts(ptA, ptB, coortype='XYZ')
- geodezyx.time_series.ts_fcts.dist_diff_btwn_2pts(ptA, ptB)
- geodezyx.time_series.ts_fcts.find_pts_from_ts_with_time(tin, tstupin, tol=0.001)
- geodezyx.time_series.ts_fcts.helmert_trans(tsin, params='itrf2008_2_etrf2000', invert=False)
- geodezyx.time_series.ts_fcts.interpolator_light(T, X, Y, Z)
- geodezyx.time_series.ts_fcts.interpolator_with_extrapolated(T, X, Y, Z)
- geodezyx.time_series.ts_fcts.linear_regress_find_coeff(tsin, coortype='ENU')
- geodezyx.time_series.ts_fcts.linear_regress_ts(tsin, coortype='ENU', titledetails='')
doit être cablé ASAP linear_regress_find_coeff
- geodezyx.time_series.ts_fcts.linear_regress_ts_discont(tsin, coortype='ENU')
- geodezyx.time_series.ts_fcts.mad_cleaner(tsin, seuil=3.5, method='dist', coortype='ABC', detrend_first=False, output_detrended=False, verbose=False)
- methodmethode d’élimination :
dist : on élimine les point qu sont trop loin en distance de la posi de ref indep : on traite les point independaments
dist est a privilégier
output_detrended ne marche que si detrend_first est activé
- geodezyx.time_series.ts_fcts.mean_list_of_pts(ptslisin)
useful for merge fct ONLY IMPLEMENTED FOR ENU coords for the moment
- geodezyx.time_series.ts_fcts.mean_posi_multi(tstup)
- geodezyx.time_series.ts_fcts.merge(tsin, N)
merge N points in one
- geodezyx.time_series.ts_fcts.merge_ts(ts_list_in)
Merge several TimeSeriePoint into one
- Parameters:
ts_list_in (list of TimeSeriePoint) – list of TimeSeriePoint.
- Returns:
ts_out – merged TimeSeriePoint.
- Return type:
- geodezyx.time_series.ts_fcts.print4compar(dA, dB, dC, dD, coortype)
- geodezyx.time_series.ts_fcts.print4compar_tabular(dicolist, split=0, print_2D3D_if_any=True)
- geodezyx.time_series.ts_fcts.refENU_for_tslist(tslist_in, tsref_marker=0)
tsref_marker : indice of the reference time serie OR the ‘all’ keyword in this case all the time series mean position will be averaged
- geodezyx.time_series.ts_fcts.retrend_ts(tsin, a_coef, b_coef, coortype='ENU', t_origin=None)
a_coefs,b_coefs = 3-tuple/list for the 3 component a_coef = m/s
- geodezyx.time_series.ts_fcts.rotate_points_class(tsattin, ptslin, Rtype='R1', xyzreftuple=([1, 0, 0], [0, 1, 0], [0, 0, 1]), angtype='deg')
- geodezyx.time_series.ts_fcts.rotate_pt_cls_solo(tsattin, pointin, Rtype='R1', xyzreftuple=([1, 0, 0], [0, 1, 0], [0, 0, 1]), angtype='deg')
- ENTREEtsattinune TS d’attitude (N angles)
pointin : UN Point en entrée
SORTIE : une TSpoint de N points
- geodezyx.time_series.ts_fcts.round_time(tsin, round_to, mode='round')
- geodezyx.time_series.ts_fcts.sigma_cleaner(tsin, seuil=3, coortype='ABC', cleantype='any', verbose=False)
- geodezyx.time_series.ts_fcts.std_dev_cleaner(tsin, stddev_threshold, coortype='ABC', cleantype='any', verbose=False)
A rebooted (1807) version of sigma_cleaner just remove values in a timeserie with a high sigma/std deviation
- geodezyx.time_series.ts_fcts.time_gap(tsin, marge=2, mode='del')
ENTREE une TimeSerie SORTIE une window (liste de listes)
- geodezyx.time_series.ts_fcts.time_win(tsin, windows, mode='keep', outbool=False)
- geodezyx.time_series.ts_fcts.time_win_T(Tin, win, mode='del')
- geodezyx.time_series.ts_fcts.time_win_multi(inplis)
- geodezyx.time_series.ts_fcts.ts_from_list(A, B, C, T, initype, sA=[], sB=[], sC=[], stat='STAT', name='NoName')
- geodezyx.time_series.ts_fcts.velocity_trans(tsin, vx, vy, vz, epoc_init='auto', epoc_end='auto')